

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T500**(E)**(A2)T

NATIONAL CERTIFICATE

ELECTRICAL TRADE THEORY N1

(11041861)

2 August 2019 (X-Paper) 09:00–12:00

This question paper consists of 5 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ELECTRICAL TRADE THEORY N1 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Sketches must be large, neat and fully labelled.
- 5. Write neatly and legibly.

QUESTION 1

1.1	Name FOUR safety devices known to you.		
1.2	Give THREE examples where colour-coding can be used for identification purposes.		
1.3	Describe the care and use of a crimping tool.		(4) [11]
QUESTI	ON 2		
2.1	Explain what you understand by electrical current.		(2)
2.2	Six cells, each with an EMF of 2,2 V and an internal resistance of 0,1 Ω are connected in series and then across a 10 Ω resistor.		
	Calculate the following:		
	2.2.1	Total EMF of the battery	(2)
*	2.2.2	Total internal resistance of the battery	(2)
1	2.2.3	Total resistance of the circuit	(2)
	2.2.4	Current flow through the circuit	(3)
	2.2.5	Potential difference across the 10 Ω resistors	(2)
	2.2.6	Voltage drop of the battery	(2)
2.3	Calculate the resistance of a copper conductor with a diameter of 6 mm and a length of 500 metres. Take resistivity of copper to be 0,0172 micro-ohm pe metre.		(3) [18]

QUESTION 3

3.3	Name TH	REE circuits found in a transformer.	(3) [12]
		(3 × 2)	(6)
	3.2.3	Maximum allowable secondary current when the transformer is rated at 50 kVA	
	3.2.2	Primary current when 60 A is drawn from the secondary current	
	3.2.1	Number of primary turns	
	Calculate the following:		
3.2	A single-phase 2 200/440 V step-down transformer has 200 secondary turns. Ignore losses.		
3.1	Name THREE types of magnets.		(3)

QUESTION 4

4.1	State FIVE factors that influence the choice of the cells for particular applications.	(5)
4.2	Name FOUR methods of producing electricity and give ONE example of each.	(8) [13]

QUESTION 5

5.1	With reg mean squ	ard to alternating current, what do you understand by RMS (root uare)?	(4)
5.2	State TW	O advantages of using a three-phase alternating current.	(2)
5.3	Name TV instrumer	VO methods that can be used to extend the range of a moving iron at.	(2)
5.4	Show, by means of circuit diagrams, how the following instruments are connected directly in a circuit:		
	5.4.1	An ammeter	
	5.4.2	A voltmeter (2 × 3)	(6) [14]

QUESTION 6

0.7	otate the purpose of cartiling.	[16]
6.4	State the purpose of earthing.	(4)
6.3	Name THREE types of appliances and give ONE example of each.	(6)
6.2	State FOUR basic requirements of conductors.	(4)
6.1	Define the term conductor.	(2)

QUESTION 7

7.1 Name the instruments used to carry out the following electrical tests:

	7.1.1	Continuity of conductors	
	7.1.2	Insulation resistance test between conductors	
	7.1.3	Insulation resistance test between conductors and earth	
	7.1.4	Earth and bonding continuity test (4 × 1)	(4)
7.2		he maximum allowable resistance of the earth continuity conductor installation?	(2)
7.3	What is th	ne practical feature of an LED?	(2)
7.4		the total capacitance of two capacitors of 6 μ F and 20 μ F when they acted in parallel.	(3)
7.5		y with the colours closest to one end of a carbon resistor, the painted as follows: blue, orange, yellow and silver.	
	Determine	e the value of the resistor.	(5) [16]

TOTAL: 100

ELECTRICAL TRADE THEORY N1

FORMULA SHEET

RESISTORS

RESISTIVITY

 $R = \frac{\rho \times \ell}{a}$

 $a = \frac{\pi \times d^2}{4}$

 $R_t = R_O (1 + \alpha t)$

 $\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$

CAPACITORS

FREQUENCY

f = np

 $C_T = C_1 + C_2 + C_3 + \dots$

 $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$

TRANSFORMERS

TEMPERATURE COEFFICIENT

$$R = \frac{V}{I}$$

 $R_T = R_1 + R_2 + R_3 + \dots$

$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

POWER

 $P = V \times I$

 $P = I^2 \times R$

$$P = \frac{V^2}{R}$$

ENERGY

 $W = P \times t$

 $W = VI \times t$

 $W = I^2 R \times t$

$$W = \frac{V^2}{R} \times t$$

CELLS

 $E = V + (I \times r) \qquad \qquad f = \frac{1}{T}$

 $R_T = R + r$

$$I = \frac{V}{R}$$

$$I = \frac{E}{(R+r)}$$

Copyright reserved